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1 The Stokes' Theorem



Surface Orientations and Boundary Orientations

Suppose S is an oriented surface with unit normal vector n.

Recall that the boundary 9S consists of a set of closed curves.

© We can orient S as follows: If you walk

along 0S with your head in the direction of
i, then S should be on your left.

This is sometimes called a right-hand-rule
orientation. If your right thumb points up
(toward i), then you should be able to curl

f your fingers from the direction of travel
o7 along OS inward toward S.



Stokes’ Theorem

Let S be an oriented surface with smooth, simple closed boundary
curves. Let F be a vector field whose components have continuous partial

derivatives. Then
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where the components of S are oriented using a right-hand-rule
orientation.

Green's Theorem is a special case of Stokes’ Theorem. If D is a region in
the plane and 9D is given a right-hand-rule orientation (with i = k),
then Stokes' Theorem becomes

yﬁ ﬁd?:// curl(F) - k dA
oD D

which is exactly Green's Theorem.



Stokes’ Theorem: Examples

Example 1: Verify Stokes’ Theorem for the vector field
F(x,y,z) = <fy2,x,z> and the surface S obtained by intersecting the
plane y 4+ z = 2 and the solid cylinder x2 + y? < 1.

z Solution: First, curl(F) = (0,0,1 + 2y).
yiz=2 The surface S can be parametrized over the unit
e disk D by G(x,y) = (x,¥,2 — y). The normal is

c Gy x G, = (1,0,0) x (0,1,—1) = (0,1,1)

o ---
Y

____\\) which points upwards.

\

The double-integral side of Stokes’ Theorem is

2w
//curl - dS = //1+2ydA / / (14 2rsin(f)) rdrdd =[]

Surface Integral



Example 1 (continued): For reference, F(x,y,z) = (—y?,x,2).
The boundary 9§ is the ellipse with
z parametrization

%c 2 F(£) = (cos(t), sin(t), 2 — sin(£))
e r'(t) = (=sin(t), cos(t), — cos(t))
y so F(7(t)) = (—sin?(t), cos(t), 2 —sin(t)) .
Therefore, the contour-integral side of Stokes’ Theorem is

Line Integral

;ésﬁ. dgF = /277 F(F(6))-F/(t) dt

a sin®(t) 4 cos?(t) — 2 cos(t) + sin(t) cos(t) dt

|
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cos?(t) dt =
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https://mediahub.ku.edu/media/t/1_pzq6jgw0

Stokes’ Theorem: Examples
Example 2: Compute // curl(l_f) - dS where l?(x,y,z) = (xz,yz,xy) and
s

S is the part of the sphere x? + y? + z2 = 25 inside the cylinder
x? 4+ y? = 16 above the xy-plane.

. . 2,2 2
Solution: C = S can be parametrized O S

as

r(t) = (4cos(t), 4sin(t), 3)
r'(t) = (—4sin(t), 4 cos(t), 0)

F(F(t)) = (12cos(t), 12sin(t), 16 cos(t)sin(t))

Using Stokes' Theorem,

// curl(F) - 75 F.dr= /OZW F(F(t))-7'(t) dt = /027r 0dt = 0.

Varying the radius of the cylinder would not change the answer of 0.


https://mediahub.ku.edu/media/t/1_1a8r1zp5

Curl and Circulation in Green and Stokes

Green's and Stokes' Theorems both say that if a vector field pushes stuff
(counter)clockwise around the boundary of a surface R?, then it rotates
stuff (counter)clockwise in the surface itself.

The circulation per unit area is curl(F), (Green) or curl(F) - i (Stokes).



THE MORE COMPLICATED THE MATH,
THE DUMBER YOU SOUND EXPLANING T,

CTOKES' THEOREM? YEAW, THAT'S
HOW \F YOU DRAW A LOOP AROUND
SOMETHING, YOU CAN TELL How mucH

SWIRLY \§ WN \T.

https://www.smbc-comics.com/comic/2014-02-24


https://www.smbc-comics.com/comic/2014-02-24

2 Vector Potentials and Surface-Independence



Vector Potentials and Surface-Independence

A vector potential for a vector field F is a vector field A such that
F = curl(A).

If F has a vector potential, then its integral over a surface S depends
only on 08, because Stokes' Theorem says that

//ﬁ-d§=//(VxA’)-d§: A dr.
S S oS

For example, if F = V x A then F has the
same flux through the two surfaces Sy, S> S
shown to the right, because 051 = 9S,.

This is very useful: we can often compute (
flux through a complicated surface by

replacing it with a simpler surface with the H
same boundary. \_/



If S; and S, have the same boundaries (including orientation(s)), then

// vXﬁ.dgz// v % F. dS.
51 82

Example 3: Consider the surface S in R3 2
defined by x? + y2 =2+ z — % for
z 2_}0, oriented by a right-hand rule, and
let F(x,y,z) = (x2y, —xy?, xyz).
Evaluate
// V x F-dS. X
s
ad

Solution: Parametrizing S and doing the integral directly is very hard.

However, since dS is just the unit circle C (x> + y? =1, z = 0), we can
use Stokes’ Theorem to replace S with the unit disk D (oriented
upwards), because S = 9D.


https://mediahub.ku.edu/media/t/1_reijor9p
https://www.geogebra.org/m/n7zjgufa

Example 3 continued: Since D is a region in the plane, the surface
integral over D is just a double integral, which we can calculate using
polar coordinates:

//vxﬁ.d§://wﬁ.d§
S D
:515 F.dF :yﬁ F.dr
oS oD
://<xz, —yz, —X2—y2>-|ZdA
D
:—//x2—|—y2dA
D
27 1
:—/ /r3drd9
o Jo

=—7/2.




Example 4: Let F = curl(A), where

—

A(x,y,z) = (y + z,sin(xy), e7%) .

Find the flux of F outward through each of
the surfaces S; and S; whose common
boundary C is the unit circle in the xz-plane.

Solution: Parametrize C as 7 (t) = (cos(t), 0, sin(t)).
The orientation of C has the surface Sy on the left.

2m
// F.dS= &5,& -dr = / —sin(t) 4 cos(t) dt = —.
S c 0

The orientation of C has the surface S, on the right.

// ﬁ-d§:§1§ K-d?:—%ﬂd?:w.
S, —C C

Note that we did not need to know what S; and S, were!


https://mediahub.ku.edu/media/t/1_k2tzh19o
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