Section 17.2

Stokes' Theorem

The Stokes' Theorem

Surface Orientations and Boundary Orientations Statement of the Theorem Examples, Verification Examples, Computing Surface Integral Using the Theorem

Vector Potentials and Surface-Independence

- Examples, Computing on an Alternative Surface if Vector Potential Exists
- Examples, Computing a Line Integral if Vector Potential Exists

1 The Stokes' Theorem

Joseph Phillip Brennan Jila Niknejad

Surface Orientations and Boundary Orientations

Suppose ${\mathcal S}$ is an oriented surface with unit normal vector $\vec{n}.$

Recall that the **boundary** $\partial \mathcal{S}$ consists of a set of closed curves.

We can orient ∂S as follows: If you walk along ∂S with your head in the direction of \vec{n} , then S should be on your left.

This is sometimes called a **right-hand-rule orientation**. If your right thumb points up (toward \vec{n}), then you should be able to curl your fingers from the direction of travel along ∂S inward toward S.

Stokes' Theorem

Let ${\cal S}$ be an oriented surface with smooth, simple closed boundary curves. Let \vec{F} be a vector field whose components have continuous partial derivatives. Then

$$\oint_{\partial S} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \iint_{S} \operatorname{curl}(\vec{\mathsf{F}}) \cdot d\vec{\mathsf{S}}$$

where the components of $\partial \mathcal{S}$ are oriented using a right-hand-rule orientation.

Green's Theorem is a special case of Stokes' Theorem. If ${\cal D}$ is a region in the plane and $\partial {\cal D}$ is given a right-hand-rule orientation (with $\vec{n}=\vec{k}$), then Stokes' Theorem becomes

$$\oint_{\partial \mathcal{D}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \iint_{\mathcal{D}} \operatorname{curl}(\vec{\mathsf{F}}) \cdot \vec{\mathsf{k}} \, dA$$

which is exactly Green's Theorem.

Stokes' Theorem: Examples

Example 1: Verify Stokes' Theorem for the vector field $\vec{F}(x, y, z) = \langle -y^2, x, z \rangle$ and the surface S obtained by intersecting the plane y + z = 2 and the solid cylinder $x^2 + y^2 \leq 1$.

<u>Solution</u>: First, $\operatorname{curl}(\vec{\mathsf{F}}) = \langle 0, 0, 1 + 2y \rangle$.

The surface S can be parametrized over the unit disk D by G(x, y) = (x, y, 2 - y). The normal is

$$\mathit{G_x} imes \mathit{G_y} = \langle 1, 0, 0
angle imes \langle 0, 1, -1
angle = \langle 0, 1, 1
angle$$

which points upwards.

Jila Nikneiad

The double-integral side of Stokes' Theorem is

$$\iint_{\mathcal{S}} \operatorname{curl}(\vec{\mathsf{F}}) \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{D}} 1 + 2y \, d\mathsf{A} = \int_{0}^{2\pi} \int_{0}^{1} (1 + 2r\sin(\theta)) \, r \, dr \, d\theta = \pi.$$
Surface Integral

Example 1 (continued): For reference, $\vec{F}(x, y, z) = \langle -y^2, x, z \rangle$. The boundary ∂S is the ellipse with parametrization

$$egin{aligned} ec{\mathbf{r}}(t) &= \langle \cos(t), \, \sin(t), \, 2 - \sin(t)
angle \ ec{\mathbf{r}}'(t) &= \langle -\sin(t), \, \cos(t), \, -\cos(t)
angle \ ec{\mathbf{F}}(ec{\mathbf{r}}(t)) &= \langle -\sin^2(t), \, \cos(t), \, 2 - \sin(t)
angle . \end{aligned}$$

Therefore, the contour-integral side of Stokes' Theorem is

so

$$\oint_{\partial S} \vec{\mathsf{F}} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{\mathsf{F}}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$
$$= \int_{0}^{2\pi} \sin^{3}(t) + \cos^{2}(t) - 2\cos(t) + \sin(t)\cos(t) dt$$
$$= \int_{0}^{2\pi} \cos^{2}(t) dt = \pi.$$

Stokes' Theorem: Examples

Example 2: Compute $\iint_{S} \operatorname{curl}(\vec{F}) \cdot d\vec{S}$ where $\vec{F}(x, y, z) = \langle xz, yz, xy \rangle$ and S is the part of the sphere $x^2 + y^2 + z^2 = 25$ inside the cylinder $x^2 + y^2 = 16$ above the *xy*-plane.

 $\label{eq:constraint} \frac{\text{Solution:}}{\text{as}} \; \mathcal{C} = \partial \mathcal{S} \; \text{can be parametrized}$

$$ec{r}(t) = \langle 4\cos(t), 4\sin(t), 3
angle$$

 $ec{r}'(t) = \langle -4\sin(t), 4\cos(t), 0
angle$

$$\vec{\mathsf{F}}(\vec{\mathsf{r}}(t)) = \langle 12\cos(t), 12\sin(t), 16\cos(t)\sin(t) \rangle$$

Using Stokes' Theorem,

$$\iint_{\mathcal{S}} \operatorname{curl}(\vec{\mathsf{F}}) \cdot d\vec{\mathsf{S}} = \oint_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{0}^{2\pi} \vec{\mathsf{F}}(\vec{\mathsf{r}}(t)) \cdot \vec{\mathsf{r}}'(t) \, dt = \int_{0}^{2\pi} 0 \, dt = 0.$$

Varying the radius of the cylinder would not change the answer of 0.

Curl and Circulation in Green and Stokes

Green's and Stokes' Theorems both say that if a vector field pushes stuff (counter)clockwise around the boundary of a surface \mathbb{R}^2 , then it rotates stuff (counter)clockwise in the surface itself.

The circulation per unit area is $curl(\vec{F})_z$ (Green) or $curl(\vec{F}) \cdot \vec{n}$ (Stokes).

https://www.smbc-comics.com/comic/2014-02-24

2 Vector Potentials and Surface-Independence

Joseph Phillip Brennan Jila Niknejad

Vector Potentials and Surface-Independence

A vector potential for a vector field \vec{F} is a vector field \vec{A} such that

 $\vec{\mathsf{F}} = \operatorname{curl}(\vec{\mathsf{A}}).$

If \vec{F} has a vector potential, then its integral over a surface S depends only on ∂S , because Stokes' Theorem says that

$$\iint_{\mathcal{S}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{S}} (\nabla \times \vec{\mathsf{A}}) \cdot d\vec{\mathsf{S}} = \oint_{\partial \mathcal{S}} \vec{\mathsf{A}} \cdot d\vec{\mathsf{r}}.$$

For example, if $\vec{F} = \nabla \times \vec{A}$ then \vec{F} has the same flux through the two surfaces S_1, S_2 shown to the right, because $\partial S_1 = \partial S_2$.

This is very useful: we can often compute flux through a complicated surface by replacing it with a simpler surface with the same boundary.

If \mathcal{S}_1 and \mathcal{S}_2 have the same boundaries (including orientation(s)), then

$$\iint_{\mathcal{S}_{1}} \nabla \times \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \iint_{\mathcal{S}_{2}} \nabla \times \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}}.$$

7

Video
 Link

v

Example 3: Consider the surface S in \mathbb{R}^3 defined by $x^2 + y^2 = 2 + z - e^{2z}$ for $z \ge 0$, oriented by a right-hand rule, and let $\vec{F}(x, y, z) = \langle x^2y, -xy^2, xyz \rangle$. Evaluate

$$\iint_{\mathcal{S}} \nabla \times \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}}.$$

<u>Solution</u>: Parametrizing S and doing the integral directly is very hard.

However, since ∂S is just the unit circle $C(x^2 + y^2 = 1, z = 0)$, we can use Stokes' Theorem to replace S with the unit disk D (oriented upwards), because $\partial S = \partial D$.

Example 3 continued: Since \mathcal{D} is a region in the plane, the surface integral over \mathcal{D} is just a double integral, which we can calculate using polar coordinates:

$$\underbrace{\iint_{\mathcal{S}} \nabla \times \vec{F} \cdot d\vec{S}}_{= \oint_{\partial \mathcal{D}} \vec{F} \cdot d\vec{r}} = \underbrace{\iint_{\mathcal{D}} \nabla \times \vec{F} \cdot d\vec{S}}_{= \oint_{\partial \mathcal{D}} \vec{F} \cdot d\vec{r}} = \underbrace{\iint_{\mathcal{D}} \langle xz, -yz, -x^2 - y^2 \rangle \cdot \vec{k} \, dA}_{= -\iint_{\mathcal{D}} x^2 + y^2 \, dA} = -\int_{0}^{2\pi} \int_{0}^{1} r^3 \, dr \, d\theta = -\pi/2.$$

Example 4: Let $\vec{F} = curl(\vec{A})$, where

$$\vec{\mathsf{A}}(x,y,z) = \langle y+z,\sin(xy),e^{xyz}\rangle$$
.

Find the flux of \vec{F} outward through each of the surfaces S_1 and S_2 whose common boundary C is the unit circle in the *xz*-plane.

<u>Solution</u>: Parametrize C as $\vec{r}(t) = \langle \cos(t), 0, \sin(t) \rangle$.

The orientation of C has the surface S_1 on the left.

$$\iint_{S_1} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \oint_{\mathcal{C}} \vec{\mathsf{A}} \cdot d\vec{\mathsf{r}} = \int_0^{2\pi} -\sin^2(t) + \cos(t) \, dt = -\pi$$

The orientation of C has the surface S_2 on the right.

$$\iint_{S_2} \vec{\mathsf{F}} \cdot d\vec{\mathsf{S}} = \oint_{-\mathcal{C}} \vec{\mathsf{A}} \cdot d\vec{\mathsf{r}} = -\oint_{\mathcal{C}} \vec{\mathsf{A}} \cdot d\vec{\mathsf{r}} = \pi.$$

Note that we did not need to know what S_1 and S_2 were!