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1 The Stokes’ Theorem



Surface Orientations and Boundary Orientations

Suppose S is an oriented surface with unit normal vector n⃗.

Recall that the boundary ∂S consists of a set of closed curves.

We can orient ∂S as follows: If you walk
along ∂S with your head in the direction of
n⃗, then S should be on your left.

This is sometimes called a right-hand-rule
orientation. If your right thumb points up
(toward n⃗), then you should be able to curl
your fingers from the direction of travel
along ∂S inward toward S.



Stokes’ Theorem
Let S be an oriented surface with smooth, simple closed boundary
curves. Let F⃗ be a vector field whose components have continuous partial
derivatives. Then ˛

∂S
F⃗ · d r⃗ =

¨
S
curl(F⃗) · d S⃗

where the components of ∂S are oriented using a right-hand-rule
orientation.

Green’s Theorem is a special case of Stokes’ Theorem. If D is a region in
the plane and ∂D is given a right-hand-rule orientation (with n⃗ = k⃗),
then Stokes’ Theorem becomes˛

∂D
F⃗ · d r⃗ =

¨
D
curl(F⃗) · k⃗ dA

which is exactly Green’s Theorem.



Stokes’ Theorem: Examples
Example 1: Verify Stokes’ Theorem for the vector field
F⃗(x , y , z) =

〈
−y2, x , z

〉
and the surface S obtained by intersecting the

plane y + z = 2 and the solid cylinder x2 + y2 ≤ 1.
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Solution: First, curl(F⃗) = ⟨0, 0, 1 + 2y⟩.
The surface S can be parametrized over the unit
disk D by G (x , y) = (x , y , 2 − y). The normal is

Gx × Gy = ⟨1, 0, 0⟩ × ⟨0, 1,−1⟩ = ⟨0, 1, 1⟩

which points upwards.

The double-integral side of Stokes’ Theorem is
¨

S
curl(F⃗) · d S⃗︸ ︷︷ ︸

Surface Integral

=

¨
D

1 + 2y dA =

ˆ 2π

0

ˆ 1

0
(1 + 2r sin(θ)) r dr dθ = π.



Example 1 (continued): For reference, F⃗(x , y , z) =
〈
−y2, x , z

〉
.

x y

D

y + z = 2

z

S

CC

The boundary ∂S is the ellipse with
parametrization

r⃗ (t) = ⟨cos(t), sin(t), 2 − sin(t)⟩
r⃗ ′(t) = ⟨− sin(t), cos(t), − cos(t)⟩

so F⃗(⃗r (t)) =
〈
− sin2(t), cos(t), 2 − sin(t)

〉
.

Therefore, the contour-integral side of Stokes’ Theorem is

Line Integral︷ ︸︸ ︷˛
∂S

F⃗ · d r⃗ =

ˆ 2π

0
F⃗(⃗r (t)) · r⃗ ′(t) dt

=

ˆ 2π

0
sin3(t) + cos2(t)− 2 cos(t) + sin(t) cos(t) dt

=

ˆ 2π

0
cos2(t) dt = π.

Video

https://mediahub.ku.edu/media/t/1_pzq6jgw0


Stokes’ Theorem: Examples
Example 2: Compute

¨
S
curl(F⃗) · d S⃗ where F⃗(x , y , z) = ⟨xz , yz , xy⟩ and

S is the part of the sphere x2 + y2 + z2 = 25 inside the cylinder
x2 + y2 = 16 above the xy -plane.

Solution: C = ∂S can be parametrized
as

r⃗ (t) = ⟨4 cos(t), 4 sin(t), 3⟩
r⃗ ′(t) = ⟨−4 sin(t), 4 cos(t), 0⟩

F⃗(⃗r (t)) = ⟨12 cos(t), 12 sin(t), 16 cos(t) sin(t)⟩ x y

y2 + y2 = 16

y2 + y2 + z2 = 25
z
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Using Stokes’ Theorem,
¨

S
curl(F⃗) · d S⃗ =

˛
C

F⃗ · d r⃗ =
ˆ 2π

0
F⃗(⃗r (t)) · r⃗ ′(t) dt =

ˆ 2π

0
0 dt = 0.

Varying the radius of the cylinder would not change the answer of 0.

https://mediahub.ku.edu/media/t/1_1a8r1zp5


Curl and Circulation in Green and Stokes

Green’s and Stokes’ Theorems both say that if a vector field pushes stuff
(counter)clockwise around the boundary of a surface R2, then it rotates
stuff (counter)clockwise in the surface itself.
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The circulation per unit area is curl(F⃗)z (Green) or curl(F⃗) · n⃗ (Stokes).



https://www.smbc-comics.com/comic/2014-02-24

https://www.smbc-comics.com/comic/2014-02-24


2 Vector Potentials and Surface-Independence



Vector Potentials and Surface-Independence
A vector potential for a vector field F⃗ is a vector field A⃗ such that

F⃗ = curl(A⃗).

If F⃗ has a vector potential, then its integral over a surface S depends
only on ∂S, because Stokes’ Theorem says that

¨
S

F⃗ · d S⃗ =

¨
S
(∇× A⃗) · d S⃗ =

˛
∂S

A⃗ · d r⃗.

For example, if F⃗ = ∇× A⃗ then F⃗ has the
same flux through the two surfaces S1,S2
shown to the right, because ∂S1 = ∂S2.

This is very useful: we can often compute
flux through a complicated surface by
replacing it with a simpler surface with the
same boundary.



If S1 and S2 have the same boundaries (including orientation(s)), then
¨

S1

∇× F⃗ · d S⃗ =

¨
S2

∇× F⃗ · d S⃗.

Example 3: Consider the surface S in R3

defined by x2 + y2 = 2 + z − e2z for
z ≥ 0, oriented by a right-hand rule, and
let F⃗(x , y , z) = ⟨x2y , −xy2, xyz⟩.
Evaluate ¨

S
∇× F⃗ · d S⃗. x

y

z

Video

Link

Solution: Parametrizing S and doing the integral directly is very hard.

However, since ∂S is just the unit circle C (x2 + y2 = 1, z = 0), we can
use Stokes’ Theorem to replace S with the unit disk D (oriented
upwards), because ∂S = ∂D.

https://mediahub.ku.edu/media/t/1_reijor9p
https://www.geogebra.org/m/n7zjgufa


Example 3 continued: Since D is a region in the plane, the surface
integral over D is just a double integral, which we can calculate using
polar coordinates:

¨
S
∇× F⃗ · d S⃗︸ ︷︷ ︸

=

˛
∂S

F⃗ · d r⃗

=

¨
D
∇× F⃗ · d S⃗︸ ︷︷ ︸

=

˛
∂D

F⃗ · d r⃗

=

¨
D

〈
xz , −yz , −x2 − y2〉 · k⃗ dA

= −
¨

D
x2 + y2 dA

= −
ˆ 2π

0

ˆ 1

0
r3 dr dθ

= −π/2.



Example 4: Let F⃗ = curl(A⃗), where

A⃗(x , y , z) = ⟨y + z , sin(xy), exyz⟩ .

Find the flux of F⃗ outward through each of
the surfaces S1 and S2 whose common
boundary C is the unit circle in the xz-plane.

Video

Solution: Parametrize C as r⃗ (t) = ⟨cos(t), 0, sin(t)⟩.
The orientation of C has the surface S1 on the left.

¨
S1

F⃗ · d S⃗ =

˛
C

A⃗ · d r⃗ =
ˆ 2π

0
− sin2(t) + cos(t) dt = −π.

The orientation of C has the surface S2 on the right.¨
S2

F⃗ · d S⃗ =

˛
−C

A⃗ · d r⃗ = −
˛
C

A⃗ · d r⃗ = π.

Note that we did not need to know what S1 and S2 were!

https://mediahub.ku.edu/media/t/1_k2tzh19o
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