Section 17.2

Stokes' Theorem

The Stokes' Theorem
Surface Orientations and Boundary Orientations
Statement of the Theorem
Examples, Verification
Examples, Computing Surface Integral Using the Theorem
Vector Potentials and Surface-Independence
Examples, Computing on an Alternative Surface if Vector Potential Exists
Examples, Computing a Line Integral if Vector Potential Exists

1 The Stokes' Theorem

Surface Orientations and Boundary Orientations

Suppose \mathcal{S} is an oriented surface with unit normal vector \vec{n}.
Recall that the boundary $\partial \mathcal{S}$ consists of a set of closed curves.

We can orient $\partial \mathcal{S}$ as follows: If you walk along $\partial \mathcal{S}$ with your head in the direction of \vec{n}, then \mathcal{S} should be on your left.

This is sometimes called a right-hand-rule orientation. If your right thumb points up (toward \vec{n}), then you should be able to curl your fingers from the direction of travel along $\partial \mathcal{S}$ inward toward \mathcal{S}.

Stokes' Theorem

Let \mathcal{S} be an oriented surface with smooth, simple closed boundary curves. Let \vec{F} be a vector field whose components have continuous partial derivatives. Then

$$
\oint_{\partial \mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{S}} \operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot d \overrightarrow{\mathrm{~S}}
$$

where the components of $\partial \mathcal{S}$ are oriented using a right-hand-rule orientation.

Green's Theorem is a special case of Stokes' Theorem. If \mathcal{D} is a region in the plane and $\partial \mathcal{D}$ is given a right-hand-rule orientation (with $\vec{n}=\vec{k}$), then Stokes' Theorem becomes

$$
\oint_{\partial \mathcal{D}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\iint_{\mathcal{D}} \operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot \overrightarrow{\mathrm{k}} d A
$$

which is exactly Green's Theorem.

Stokes' Theorem: Examples

Example 1: Verify Stokes' Theorem for the vector field $\vec{F}(x, y, z)=\left\langle-y^{2}, x, z\right\rangle$ and the surface \mathcal{S} obtained by intersecting the plane $y+z=2$ and the solid cylinder $x^{2}+y^{2} \leq 1$.

Solution: First, $\operatorname{curl}(\vec{F})=\langle 0,0,1+2 y\rangle$.
The surface \mathcal{S} can be parametrized over the unit disk \mathcal{D} by $G(x, y)=(x, y, 2-y)$. The normal is

$$
G_{x} \times G_{y}=\langle 1,0,0\rangle \times\langle 0,1,-1\rangle=\langle 0,1,1\rangle
$$

which points upwards.

The double-integral side of Stokes' Theorem is

$$
\underbrace{\iint_{\mathcal{S}} \operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot d \overrightarrow{\mathrm{~S}}}_{\text {Surface Integral }}=\iint_{\mathcal{D}} 1+2 y d A=\int_{0}^{2 \pi} \int_{0}^{1}(1+2 r \sin (\theta)) r d r d \theta=\pi .
$$

Example 1 (continued): For reference, $\vec{F}(x, y, z)=\left\langle-y^{2}, x, z\right\rangle$.
The boundary $\partial \mathcal{S}$ is the ellipse with
 parametrization

$$
\begin{aligned}
\vec{r}(t) & =\langle\cos (t), \sin (t), 2-\sin (t)\rangle \\
\vec{r}^{\prime}(t) & =\langle-\sin (t), \cos (t),-\cos (t)\rangle \\
\text { so } \quad \overrightarrow{\mathrm{F}}(\vec{r}(t)) & =\left\langle-\sin ^{2}(t), \cos (t), 2-\sin (t)\right\rangle .
\end{aligned}
$$

Therefore, the contour-integral side of Stokes' Theorem is

$$
\begin{aligned}
\overbrace{\oint_{\partial \mathcal{S}} \vec{F} \cdot d \vec{r}}^{\text {Line Integral }} & =\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi} \sin ^{3}(t)+\cos ^{2}(t)-2 \cos (t)+\sin (t) \cos (t) d t \\
& =\int_{0}^{2 \pi} \cos ^{2}(t) d t=\pi .
\end{aligned}
$$

Stokes' Theorem: Examples

Example 2: Compute $\iint_{\mathcal{S}} \operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot d \overrightarrow{\mathrm{~S}}$ where $\overrightarrow{\mathrm{F}}(x, y, z)=\langle x z, y z, x y\rangle$ and
\mathcal{S} is the part of the sphere $x^{2}+y^{2}+z^{2}=25$ inside the cylinder $x^{2}+y^{2}=16$ above the $x y$-plane.

Solution: $\mathcal{C}=\partial \mathcal{S}$ can be parametrized as

$$
\begin{aligned}
\vec{r}(t) & =\langle 4 \cos (t), 4 \sin (t), 3\rangle \\
\vec{r}^{\prime}(t) & =\langle-4 \sin (t), 4 \cos (t), 0\rangle \\
\overrightarrow{\mathrm{F}}(\vec{r}(t)) & =\langle 12 \cos (t), 12 \sin (t), 16 \cos (t) \sin (t)\rangle
\end{aligned}
$$

- Video

Using Stokes' Theorem,

$$
\iint_{\mathcal{S}} \operatorname{curl}(\overrightarrow{\mathrm{F}}) \cdot d \overrightarrow{\mathrm{~S}}=\oint_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{0}^{2 \pi} \overrightarrow{\mathrm{~F}}(\overrightarrow{\mathrm{r}}(t)) \cdot \overrightarrow{\mathrm{r}}^{\prime}(t) d t=\int_{0}^{2 \pi} 0 d t=0 .
$$

Varying the radius of the cylinder would not change the answer of 0 .

Curl and Circulation in Green and Stokes

Green's and Stokes' Theorems both say that if a vector field pushes stuff (counter)clockwise around the boundary of a surface \mathbb{R}^{2}, then it rotates stuff (counter)clockwise in the surface itself.

The circulation per unit area is $\operatorname{curl}(\vec{F})_{z}($ Green $)$ or $\operatorname{curl}(\vec{F}) \cdot \vec{n}($ Stokes $)$.

THE MORE COMPLICATED THE MATH, THE DUMBER YOU SOUND EXPLAINING T.

https://www.smbc-comics.com/comic/2014-02-24

2 Vector Potentials and Surface-Independence

Vector Potentials and Surface-Independence

A vector potential for a vector field \vec{F} is a vector field \vec{A} such that

$$
\vec{F}=\operatorname{curl}(\vec{A}) .
$$

If $\overrightarrow{\mathrm{F}}$ has a vector potential, then its integral over a surface \mathcal{S} depends only on $\partial \mathcal{S}$, because Stokes' Theorem says that

$$
\iint_{\mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{S}}(\nabla \times \overrightarrow{\mathrm{A}}) \cdot d \overrightarrow{\mathrm{~S}}=\oint_{\partial \mathcal{S}} \overrightarrow{\mathrm{A}} \cdot d \overrightarrow{\mathrm{r}} .
$$

For example, if $\vec{F}=\nabla \times \vec{A}$ then \vec{F} has the same flux through the two surfaces $\mathcal{S}_{1}, \mathcal{S}_{2}$ shown to the right, because $\partial \mathcal{S}_{1}=\partial \mathcal{S}_{2}$.

If \mathcal{S}_{1} and \mathcal{S}_{2} have the same boundaries (including orientation(s)), then

$$
\iint_{\mathcal{S}_{1}} \nabla \times \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}=\iint_{\mathcal{S}_{2}} \nabla \times \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}} .
$$

Example 3: Consider the surface \mathcal{S} in \mathbb{R}^{3} defined by $x^{2}+y^{2}=2+z-e^{2 z}$ for $z \geq 0$, oriented by a right-hand rule, and let $\vec{F}(x, y, z)=\left\langle x^{2} y,-x y^{2}, x y z\right\rangle$.
Evaluate

$$
\iint_{\mathcal{S}} \nabla \times \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}
$$

- Video
\rightarrow Link

Solution: Parametrizing \mathcal{S} and doing the integral directly is very hard.
However, since $\partial \mathcal{S}$ is just the unit circle $\mathcal{C}\left(x^{2}+y^{2}=1, z=0\right)$, we can use Stokes' Theorem to replace \mathcal{S} with the unit disk \mathcal{D} (oriented upwards), because $\partial \mathcal{S}=\partial \mathcal{D}$.

Example 3 continued: Since \mathcal{D} is a region in the plane, the surface integral over \mathcal{D} is just a double integral, which we can calculate using polar coordinates:

$$
\begin{aligned}
\underbrace{\iint_{\mathcal{S}} \nabla \times \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}}_{=\oint_{\partial \mathcal{S}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}} & =\underbrace{\iint_{\mathcal{D}} \nabla \times \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{~S}}}_{=\oint_{\partial \mathcal{D}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}} \\
& =\iint_{\mathcal{D}}\left\langle x z,-y z,-x^{2}-y^{2}\right\rangle \cdot \overrightarrow{\mathrm{k}} d A \\
& =-\iint_{\mathcal{D}} x^{2}+y^{2} d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta \\
& =-\pi / 2
\end{aligned}
$$

Example 4: Let $\vec{F}=\operatorname{curl}(\overrightarrow{\mathrm{A}})$, where

$$
\vec{A}(x, y, z)=\left\langle y+z, \sin (x y), e^{x y z}\right\rangle .
$$

Find the flux of \vec{F} outward through each of the surfaces \mathcal{S}_{1} and \mathcal{S}_{2} whose common boundary \mathcal{C} is the unit circle in the $x z$-plane.

Solution: Parametrize \mathcal{C} as $\vec{r}(t)=\langle\cos (t), 0, \sin (t)\rangle$.
The orientation of \mathcal{C} has the surface \mathcal{S}_{1} on the left.

$$
\iint_{\mathcal{S}_{1}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{~S}}=\oint_{\mathcal{C}} \overrightarrow{\mathrm{A}} \cdot d \overrightarrow{\mathrm{r}}=\int_{0}^{2 \pi}-\sin ^{2}(t)+\cos (t) d t=-\pi
$$

The orientation of \mathcal{C} has the surface \mathcal{S}_{2} on the right.

$$
\iint_{\mathcal{S}_{2}} \overrightarrow{\mathrm{~F}} \cdot d \overrightarrow{\mathrm{~S}}=\oint_{-\mathcal{C}} \overrightarrow{\mathrm{A}} \cdot d \overrightarrow{\mathrm{r}}=-\oint_{\mathcal{C}} \overrightarrow{\mathrm{A}} \cdot d \overrightarrow{\mathrm{r}}=\pi .
$$

Note that we did not need to know what \mathcal{S}_{1} and \mathcal{S}_{2} were!

